
WASIM: A Word-level Abstract Symbolic
Simulation Framework for Hardware Formal

Verification?

Wenji Fang1(�) and Hongce Zhang1,2

1 The Hong Kong University of Science and Technology (Guangzhou),

Guangzhou, China

wfang838@connect.hkust-gz.edu.cn
2 The Hong Kong University of Science and Technology,

Hong Kong, China

hongcezh@ust.hk

Abstract. This paper demonstrates the design and usage of WASIM,
a word-level abstract symbolic simulation framework with pluggable ab-
straction/refinement functions. WASIM is useful in the formal verifica-
tion of functional properties on register-transfer level (RTL) hardware
designs. Users can control the symbolic simulation process and tune the
level of abstraction by interacting with WASIM through its Python API.
WASIM can be used to directly check formal properties on symbolic
traces or to extract useful fragments from symbolic representations to
construct safe inductive invariants as a correctness certificate. We demon-
strate the utility of WASIM on the verification of two pipelined hardware
designs. WASIM and the case studies are available under open-source li-
cense at: [9].

Keywords: Formal verification · symbolic simulation · abstraction re-
finement.

1 Introduction

Formal property verification (FPV) plays an essential role in hardware verifica-
tion. Symbolic simulation is one of the model checking techniques used for FPV.
It explores all paths of the design circuit simultaneously with symbolic values to
work around the state explosion problem [6].

In this paper, we present WASIM, a word-level abstract symbolic simula-
tion framework with customizable abstraction/refinement functions. In the prac-
tice of hardware formal verification, we consider the guidance from human ver-
ification engineers as the key to scaling formal techniques up for industrial-
size designs. Therefore, in WASIM, we emphasize easy user-interaction that al-
lows engineers to freely control the simulation process and plug-in their own

? The work has been supported in part by Guangdong Basic and Applied Basic
Research Fund no. 2022A1515110178; by Guangzhou-HKUST(GZ) Joint Funding
Scheme no. SL2022A03J01288; and by Guangzhou Basic Research Project no.
SL2022A04J00615.

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 11–18, 2023.
https://doi.org/10.1007/978-3-031-30820-8 2

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-8380-9395
http://orcid.org/0000-0003-4001-264X
mailto:wfang838@connect.hkust-gz.edu.cn
mailto:hongcezh@ust.hk
https://doi.org/10.1007/978-3-031-30820-8_2
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_2&domain=pdf


W. Fang and H. Zhang

design-specific abstraction functions. WASIM can also ensure its trustworthi-
ness through a certificate (an inductive invariant) constructed from the traces
of symbolic simulation.

• Simulation Control
• Abstraction Function
• State Extraction & Manipulation

RTL Design
(Verilog)

User Input
Script

WASIM

User Interface

Traces of 
Abstract States

Formal Property 
Verification

Inductive Invariant

FV Application

Btor 
Parser STS

Input Processing

Simulator

Yosys

State Representation
• SMT formulas

Abstraction Refinement
• concrete-abstract mapping

State Simplification
• ‘X’- agnostic
• ‘X’- aware

Symbolic Simulation
• substitution

Fig. 1. Workflow of WASIM

Figure 1 demonstrates the workflow of WASIM. We highlight some of its
features below:

1. WASIM has a full support for synthesizable Verilog through the integration
with Yosys [17].

2. WASIM provides a set of Python API for rich user interactions.
3. WASIM performs symbolic simulation at the word level. It supports cus-

tomizable abstraction refinement functions and has built-in state simplifica-
tion functions to scale up for larger designs.

4. Users may freely extract symbolic state representations for various use cases
(e.g., formal property verification).

The remainder of this paper is organized as follows. The next section demon-
strates the functionalities of WASIM, followed by a short presentation of user
interface in Sect. 3. Sect. 4 reports the results on case studies. Sect. 5 discusses
related work. Finally, Sect. 6 concludes the paper.

2 WASIM Functionalities

The WASIM framework is built on top of PySMT [11], a unified interface for
multiple SMT solvers. The functionalities are described below.

2.1 Input Processing.

The input Verilog circuits are initially processed by the open-source synthesis
suite Yosys and transformed into the Btor2 format [15], an efficient word-level
representation for a state transition system (STS). WASIM consumes Btor2 with
a parser modified from CoSA (CoreIR Symbolic Analyzer) [14].

12



WASIM: A Word-level Abstract Symbolic Simulation Framework

2.2 Representing Simulation States using SMT formulas.

The state in WASIM is represented using SMT formulas, with one for each state
variable assignment. There are also assumptions (SMT formulas) associated with
each state. The assumptions capture the additional constraints on a symbolic
trace, for example, certain input combinations will never happen. The state is
reachable (realizable) if all assumptions are satisfiable. The state representation
may also include undetermined values (‘X’ values). We keep a special set of SMT
variables to represent the ‘X’ values.

2.3 Symbolic Simulation.

Symbolic simulation is mainly achieved through substitution. Variables in the
transition function of an STS are substituted by variable assignments from the
previous cycle. Unassigned input or unknown state variables are replaced by ‘X’
values. WASIM can explore either the state in the next one cycle (single-step
simulation) or traverse a set of states until no new (abstract) states are found
(multi-step simulation). Expression simplification and abstraction are used in
WASIM to reduce the size of the state representation.

2.4 Expression Simplification.

Expression simplification reduces the size of an SMT formula in the state repre-
sentation through the combination of various techniques. The built-in rewriting
functionality in SMT solvers serves as the ‘X’-agnostic simplification step. After
this first step, WASIM proceeds with ‘X’-aware simplification that checks if any
‘X’ value can be reduced given the state assumptions. For example, an ‘X’ is re-
ducible if it resides in the unreachable branch of an ITE (if-then-else) operator.
WASIM traverses the abstract syntax tree of SMT expressions and heuristically
guess-and-check reducible ‘X’ values. When confirmed, WASIM further rewrites
the expression to syntactically eliminate the ‘X’ values. We design several pat-
terns for common rewriting. For the most general case, WASIM will fall back to
query the CVC5 [2] SyGuS solver [1] to synthesize a new expression without ‘X’.

2.5 Abstraction Refinement.

We allow users to define abstraction functions that map a concrete state into
an abstract domain. A simple example of such abstraction is to leave out cer-
tain registers in the symbolic state representation by replacing them with ‘X’
values. The abstraction could be design-specific — engineers familiar with the
hardware microarchitecture may have better ideas on which registers to omit.
Therefore, we give such freedom to the WASIM users and allow them to spec-
ify their own abstraction functions. Abstraction is also essential to the efficient
state traversal because it is almost impossible to traverse the concrete state
space of a large hardware design. When it is hard to pre-determine the best ab-
straction function, users can specify a refinement function and perform dynamic
abstraction-refinement during symbolic simulation. An example of abstraction
refinement function is demonstrated below in Sect. 3.2

13



W. Fang and H. Zhang

3 User Interface

WASIM provides a Python interface to control the simulation, apply abstraction
or refinement and manipulate the symbolic expressions in state representations.

3.1 Simulation Process Control.

WASIM provides a single-step simulation function sim one step for forward
symbolic simulation of one clock cycle. Users can perform bounded-step simula-
tion by using the function in a range-based loop.

On the other hand, there is often the need for unbounded simulation. WASIM
provides an unbounded simulation function traverse all states. As its name
suggests, this function instructs the simulator to search for all symbolic states
that are reachable from the current state. Users may optionally provide a termi-
nation condition and the simulator will only search for reachable states before
the condition becomes true. This is useful, for example, when searching for all
symbolic states when an instruction is stalled in a certain pipeline stage.

3.2 Customizable Abstraction/Refinement Function.

Users may provide a callable Python object as the abstraction/refinement func-
tion. The abstraction function should transfer one symbolic state to its counter-
part in the abstract domain, while the refinement function returns a list of states.

Here we give an example of user-specified dynamic abstraction refinement
during symbolic simulation. In microprocessor verification, we can use symbolic
simulation to check that the arithmetic processing pipeline is functionally correct
by computing the output symbolic state from symbolic pipeline inputs. There
are external signals coming into the pipeline that only affect latency rather
than the arithmetic function. Abstraction can be applied to omit all external
signals, however, the final abstract symbolic state might become too coarse.
A refinement function can lazily bring back the external signals and branch the
execution based on certain signal combinations, until the final symbolic states are
sufficiently accurate to check for functional correctness. This example will require
the simulator to have a pluggable interface for abstraction/refinement functions.

3.3 Symbolic State Extraction and Manipulation.

In order to use the result of symbolic simulation, WASIM allows users to freely
extract and manipulate the symbolic expressions in a state representation. Sim-
ulation traces are available as Python lists. Users can collect all states in any
simulation step and obtain the expressions of arbitrary state variable assignment.
By checking the satisfiability of the conjunction of all variable assignments, the
assumptions, and the negated property, users can check for property violations
on a symbolic state. WASIM can also evaluate arbitrary functions over state
variables given the variable assignment. This is useful to compute the symbolic
value of wires in Verilog. Finally, users may re-assign an intermediate state and
restart the simulation from that point.

14



WASIM: A Word-level Abstract Symbolic Simulation Framework

Symbolic state extraction and manipulation enable two use cases: formal
property verification and inductive invariant construction. Users can
achieve formal property verification by checking the violation of properties on
all abstract simulation states extracted from symbolic state traversal. Fragments
of expressions in symbolic states are also helpful in the construction of inductive
invariants, which could serve as the certificate for the abstract state traversal.
For example,

(sv1 = expr1) ∧ (sv2 = expr2) ∧ ...

indicates that the STS resides in one (abstract) symbolic state where sv1, sv2, ...
are the state variables, and expr1, expr2, ... are the symbolic expressions in state
representation. By taking the disjunction of all such formulas of all reachable
abstract symbolic states, we cover the whole abstract state space and therefore,
the disjunction will constitute an inductive invariant for this STS. To certify a
specific safety property is valid, one can build from this inductive invariant with
additional expression fragments to create a safe inductive invariant.

4 Case Studies

We demonstrate the usage of WASIM with two verification case studies on
pipelined hardware designs. The design statistics are shown in Table 1, including
the number of state bits and logic gates.

Designs under verification. The first design is a simple arithmetic pipeline
with two variants implemented with or without external stall signals. They share
the same datapath that performs a multiply-accumulate (MAC) operation. The
second design is a simple 3-stage pipeline that resembles the backend of a pro-
cessor core. It contains data forwarding logic and the control logic to handle
external stall signals. Verification in this case study checks if these hardware
designs are implemented with the correct functions. Despite the relatively small
size, some are already nontrivial for a symbolic model checker.

Users’ input. For simple MAC without stall signals, users only need to provide
a simulation script with bounded simulation steps. For all other designs, certain
stages may be stalled by external signals for a period of time. The simulation
script instructs the simulator to case-split based on the value of external stall
signals and symbolically explore all stalled states in each step. The abstraction
function only keeps the concrete representation in the downstream of the stalled
stage, therefore, there are only a small number of stalled states in the abstract
domain. Finally, users may check the given properties are valid on every sym-
bolic path and the symbolic expressions in the state representations are used
to construct parts of inductive invariants. The inductive invariants are further
checked to ensure the correctness of simulation process given the user-provided
abstraction functions.

Results of the experiment. In the experiments, we compare with the IC3/PDR
symbolic model checking method implemented in Berkeley-ABC. The last three
columns in Table 1 are the time of symbolic simulation, the time of checking

15



W. Fang and H. Zhang

Table 1. Experimental Results

Design Statistics IC3/PDR WASIM

Design name #. state bit #. logic gate Time Simulation-time FPV-time Inv-time

simple MAC no stall 27 180 0.03s 0.02 0.3s 0.09s
simple MAC + stall 27 234 0.03s 11min26s 1s 7s

3-stage-pipe-ADD

199

3153

>72hr

1min57s 0.3s 2s
3-stage-pipe-NAND 2187 1min57s 0.3s 2s
3-stage-pipe-SET 2681 1min21s 0.2s 0.8s
3-stage-pipe-NOP 2421 58s 0.1s 1s

functional properties on all traces and the time for checking the validity of in-
ductive invariants. Results show that for the 3-stage-pipe-* problems, with
proper guidance from a human verification engineer, symbolic simulation can
outperform autonomous model checking with order-of-magnitude speed-up. The
results are obtained on a server running Ubuntu 20.04 with a 2.9 GHz Intel
Xeon(R) Platinum 8375C CPU and 128G RAM.

5 Related Works

Apart from WASIM, VossII [16] is another tool for hardware symbolic simula-
tion which implements the symbolic trajectory evaluation (STE) method [12,13].
VossII is mainly on the bit level using binary decision diagrams (BDDs) as the
state representation. Several extensions to the original STE method have been
proposed so far. For example, generalized STE (GSTE) enables unbounded prop-
erty verification using assertion graphs [18], and the word-level STE (WSTE)
achieves a higher level of abstraction with word-level variables in bit-fields [7].
These extensions are typically only available in a commercial STE implementa-
tion. Moreover, users must be fluent in a domain-specific functional programming
language named fl in order to use VossII.

On the other hand, tools based on symbolic model checking are broadly avail-
able for hardware formal verification, for example, Berkeley-ABC [5], which is a
powerful open-source tool implementing a collection of various model checking
algorithms [3,4,8]. Unlike symbolic simulation, symbolic model checking runs au-
tonomously to prove or falsify given properties without user interactions. How-
ever, without proper human guidance, model checking tools may suffer more
from the scalability problem.

6 Conclusions

In this paper, we present the design and usage of WASIM, a word-level abstract
symbolic simulation framework. WASIM is featured with a Python user interface
and pluggable abstraction/refinement functions to facilitate human verification
engineers to bring in their insights to better scale formal methods for hardware
designs. Applications of WASIM include formal property verification and induc-
tive invariant generation. Our case studies show that this strategy can be helpful
for some problems that are hard for autonomous model checking.

16



WASIM: A Word-level Abstract Symbolic Simulation Framework

Data Availability Statement

The data that support the findings of this study are openly available in WASIM:
A Word-level Abstract Symbolic Simulation Framework for Hardware Formal
Verification at https://doi.org/10.5281/zenodo.7247147, reference number
[10]. The authors confirm that the data supporting the findings of this study are
available within the article and its supplementary materials.

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. FM-
CAD 2013 Formal Methods in Computer–Aided Design p. 1

2. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., et al.: CVC5: A versatile and
industrial-strength SMT solver. In: Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2022, Held as Part of ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 13243, pp. 415–442. Springer (2022). https://doi.org/10.1007/978-3-030-99524-
9 24, https://doi.org/10.1007/978-3-030-99524-9_24

3. Bradley, A.R.: Sat-based model checking without unrolling. In: International Work-
shop on Verification, Model Checking, and Abstract Interpretation. pp. 70–87.
Springer (2011)

4. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterex-
amples to induction. In: Formal Methods in Computer Aided Design (FMCAD’07).
pp. 173–180. IEEE (2007)

5. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: International Conference on Computer Aided Verification. pp. 24–40.
Springer (2010)

6. Bryant, R.E.: Symbolic simulation-techniques and applications. In: 27th
ACM/IEEE Design Automation Conference. pp. 517–521. IEEE (1990)

7. Chakraborty, S., Khasidashvili, Z., Seger, C.J.H., Gajavelly, R., Haldankar, T.,
Chhatani, D., Mistry, R.: Word-level symbolic trajectory evaluation. In: Interna-
tional Conference on Computer Aided Verification. pp. 128–143. Springer (2015)

8. Eén, N., Mishchenko, A., Brayton, R.: Efficient implementation of property di-
rected reachability. In: 2011 Formal Methods in Computer-Aided Design (FM-
CAD). pp. 125–134. IEEE (2011)

9. Fang, W., Zhang, H.: tacas23-wasim (2022), https://github.com/fangwenji/

tacas23-wasim

10. Fang, W., Zhang, H.: WASIM: A word-level abstract symbolic simulation frame-
work for hardware formal verification (artifact) (2022), https://doi.org/10.

5281/zenodo.7247147

11. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT workshop. vol. 2015 (2015)

12. Hazelhurst, S., Seger, C.J.H.: Symbolic trajectory evaluation. Formal hardware
verification pp. 3–78 (1997)

13. Kaivola, R., Ghughal, E., et al.: Replacing testing with formal verification in intel R©
coreTM i7 processor execution engine validation. In: International Conference on
Computer Aided Verification. pp. 414–429. Springer (2009)

17

https://doi.org/10.5281/zenodo.7247147
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://github.com/fangwenji/tacas23-wasim
https://github.com/fangwenji/tacas23-wasim
https://doi.org/10.5281/zenodo.7247147
https://doi.org/10.5281/zenodo.7247147


W. Fang and H. Zhang

14. Mattarei, C., Mann, M., Barrett, C., Daly, R.G., Huff, D., Hanrahan, P.: CoSA:
Integrated verification for agile hardware design. In: 2018 Formal Methods in Com-
puter Aided Design (FMCAD). pp. 1–5. IEEE (2018)

15. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, btormc and boolector 3.0. In:
International Conference on Computer Aided Verification. pp. 587–595. Springer
(2018)

16. Seger, C.J.: The VossII hardware verification suite (2020), https://github.com/
TeamVoss/VossII

17. Wolf, C.: Yosys open synthesis suite (2016), https://github.com/YosysHQ/yosys
18. Yang, J., Seger, C.J.: Introduction to generalized symbolic trajectory evaluation.

IEEE transactions on very large scale integration (VLSI) systems 11(3), 345–353
(2003)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

18

https://github.com/TeamVoss/VossII
https://github.com/TeamVoss/VossII
https://github.com/YosysHQ/yosys
http://creativecommons.org/licenses/by/4.0/

	WASIM: A Word-level Abstract Symbolic Simulation Framework for Hardware Formal Verification
	1 Introduction
	2 WASIM Functionalities
	2.1 Input Processing.
	2.2 Representing Simulation States using SMT formulas.
	2.3 Symbolic Simulation.
	2.4 Expression Simpilification
	2.5 Abstraction Refinement.

	3 User Interface
	3.1 Simulation Process Control.
	3.2 Customizable Abstraction/Refinement Function.
	3.3 Symbolic State Extraction and Manipulation.

	4 Case Studies
	5 Related Works
	6 Conclusions
	Data Availability Statement
	References




