

1

CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design

Wenji Fang Shang Liu Jing Wang Zhiyao Xie wfang838@connect.ust.hk

Hong Kong University of Science and Technology ICLR 2025

Circuit Representation Learning

Background: AI for IC Design

- Remarkable achievements
 - Design quality evaluation
 - Power, timing, area, routability, etc.
 - Functional reasoning
 - Arithmetic word-level abstraction, SAT, etc.
 - > Optimization
 - Design space exploration, etc.
 - Generation
 - RTL code, verification, etc.

Paradigm Shift in AI for IC Design

- Traditional: task-specific supervised learning
 - Tedious, time-consuming, not generalized

Single-Stage Circuit Data

- New trend: general self-supervised representation learning
 - Encode circuit into embeddings for various EDA tasks
 - *Pre-training* to capture circuit intrinsics
 - *Fine-tuning* for EDA tasks

Existing Circuit Representation Learning

- Explorations emerging from 2021
- Cover all main design stages
 - HLS, RTL, netlist, layout
- Research focus
 - Pre-training techniques
 - Circuit-related supervisions
 - Circuit-specific self-supervised
 - Predictive EDA tasks
- Limitation: only focus on circuit graph structure

Multimodal Representation Learning

- Encode & fuse information from diverse modalities
 - Vision-language
 - Graph-language
 - Software-graph

.....

• Can we fuse multiple circuit modalities to learn better circuit representation?

CircuitFusion: Multimodal Circuit Representation Learning

Summary of Circuit Modalities

• Multimodal nature of RTL-stage circuits

Functionality
Summary

Implementation Details

Functionality Summary

semantic

HDL

Code

Structure Graph

CircuitFusion Overview

9

- Multimodal fused & implementation-aware RTL encoder
 - Propose 4 strategies according to 4 unique circuit properties
 - Achieve SOTA performance on various EDA tasks

CircuitFusion Model Architecture

10

- 3 unimodal encoders: graph, summary, code
- 1 multimodal fusion encoder: cross attension, summry-centric fusion
- **1** auxiliary netlist encoder: implementation-aware

Step 1: Circuit Preprocessing

Property 1: parallel execution

- Combinational logic calculates simultaneously
- Sequential registers are updated only at each clock cycle

Strategy 1: sub-circuit generation

- Split based on register cones
 - Backtrace all combinational input logic

> Advantages

- Consistency in Modality & stage
- Complete state transition of 1 cycle
- Intermediate granularity

Step 2: CircuitFusion Pre-Training

Property 2: functional equivalent transformation

- Circuit w. similar function may have different structures
- Strategy 2: semantic-structure pre-training

Self-supervised Task #1-3 for each modality and multimodal fusion

Step 2: CircuitFusion Pre-Training

- Property 3: multiple design stages
 - \succ RTL (high-level semantics) \rightarrow netlist (low-level details)
- **Strategy 3:** implementation-aware alignment
 - Pre-training with netlist encoder across design stage (Task #4)

Step 3: Application for EDA Tasks

- Property 4: circuit reusability
 - Reuse circuit IPs rather than design from scratch
- **Strategy 4:** Retrieval-augmented inference
 - Retrieves most similar circuits based on embeddings

Experimental Results

Design Quality Prediction Tasks

• SOTA performance on RTL-stage PPA prediction vs.

- Circuit task-specific solutions
- Text encoders
- Software code encoders

Туре	Mathad	Slack		WNS		TNS		Power		Area	
	Wiethou	R	MAPE	R	MAPE	R	MAPE	R	MAPE	R	MAPE
Hardware Solution	RTL-Timer	0.85 17%		0.9	16%	0.96 25%		N/A		N/A	
	MasterRTL	N/A		0.89	18%	0.94	28%	0.89	26%	0.98	16%
	SNS v2	N/A		0.82	22%	N/A		0.76	28%	0.93	25%
Text Encoder	NV-Embed-v1	N/A		0.49	17%	0.97	55%	0.85	44%	0.86	24%
Software Code Encoder	UnixCoder	N/A		0.46	21%	0.95	44%	0.83	29%	0.85	26%
	CodeT5+ Encoder	N/A		0.55	21%	0.63	43%	0.49	46%	0.45	39%
	CodeSage	N/A		0.23	25%	0.86	45%	0.8	38%	0.77	41%
Ours	CircuitFusion	0.87	12%	0.91	11%	0.99	15%	0.99	13%	0.99	11%

Ablation Study

Impact on proposed strategies and circuit modalities

Design Quality Prediction Tasks

Zero-shot retrieval

- First hardware solution to support zero-shot inference
- Outperform text / software encoders

Mathad	Slack				Sub-circuit Power				Sub-circuit Area			
Wiethou	top-1	top-3	top-5	top-10	top-1	top-3	top-5	top-10	top-1	top-3	top-5	top-10
LLM Encoder	51	35	33	34	92	90	90	90	90	88	88	88
UnixCoder	56	36	36	36	90	89	90	91	89	88	89	89
CodeT5+ Embedding	57	35	35	36	88	87	89	90	87	86	87	88
CodeSage	50	36	36	36	89	87	88	91	88	85	86	87
Ours	21	22	23	26	36	40	42	53	35	40	42	51

Table 3: MAPE(%) results of the zero-shot top-k similar circuit retrieval.

• Performance scaling up w. model & data size

Conclusion & Future Work

Conclusion

• CircuitFusion: first multimodal RTL encoder

- ➤ 4 straties according to 4 unique circuit properties
- Support various EDA tasks
- Future work
 - Multimodal netlist encoder via text-attributed graph [DAC'25]
 - Align circuit encoders with generative LLM decoders

Thank You!