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Circuit Foundation Model



• Traditional: task-specific supervised predictive AI for EDA

• Tedious, time-consuming, not generalized
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From Task-Specific to Circuit Foundation Model

•

•

1Wenji Fang et al. A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA

• New trend1: general self-supervised Circuit Foundation Model

• Encode circuit into general embeddings for various EDA tasks (circuit encoder)

• Pre-training to capture circuit intrinsics (self-supervised)

• Fine-tuning for EDA tasks (supervised)



• Netlist encoder: most actively explored
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Circuit Representation Learning (Encoders) 

1Wenji Fang et al. A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA



• Limitation: graph-only, only supports AIG

• Graph structure over functionality

• Limited to AIG, post-syn netlists?

• Rely on functional supervision (e.g., truth table)

• Lack of physical encoding, PPA tasks?
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Existing Netlist (AIG) Encoders

1Wenji Fang et al. A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA

• How about LLM?

• Textual semantics rather than structure

• Struggle with netlists (low-level, bit-blasted)

• Lack of structural encoding

•

•

•

•

•



•

•

•

•

•
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Motivation: LLM + Graph

•

•

•

•

Can we fuse them together?
LLM (Semantic) + Graph (Structure)

Multimodal Fusion on Netlist!



• Multimodal learning: fuse information from diverse modalities

• Vision-language

• ……

• Multimodal learning on RTL2

• Register-transfer level (RTL)

• Earlier stage →more semantic

• Fuse 3 RTL modalities at register level
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Multimodal Fusion on Circuit: RTL vs Netlist

2Wenji Fang et al. CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design. [ICLR’25]

• Multimodal learning on netlist？
• Gate-level netlists

• Later stage →more structure

• Should fuse at gate level



NetTAG: Multimodal 
Netlist Foundation Model
- Overview



• Goal: develop a general netlist encoder

• Pre-train: netlist → embeddings w. functional and physical information

• Fine-tune: support various EDA tasks w. the embedding
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NetTAG: A General Netlist Foundation Model



• Key idea: fuse local gate text with global structure graph

• Multimodal preprocess: netlist → text-attributed graph 

• Multimodal 2-stage model: gate text (LLM) + circuit graph (GNN)

• Multimodal pre-train: self-supervised & cross-stage-aware
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NetTAG: Multimodal Netlist Encoder via TAG



• Key advantages: first post-syn netlist encoder w. both func. & phys.

• Support diverse gate types (any netlist gate)

• Support multiple circuit granularities (gate & register & circuit)

• Support various netlist tasks (func. & phys.)
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NetTAG: Moving From AIG-Only to Any Netlist



NetTAG: Multimodal 
Netlist Foundation Model
- Implementation Details



• Text-attributed graph: 1. node (gate) text attribute + 2. graph connectivity

• 1. Gate → text: local functional & physical info → semantics

• Functional: gate symbolic logic expression
• E.g., U3 = ! ((R1 ⊕ R2)|! R2)

• Physical: gate physical characteristic vector

• Advantages: various gate types & structure independence & LLM compatible

• 2. Circuit → graph: global connectivity → structure
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Preprocessing: Netlist as TAG



• NetTAG two-stage encoding for netlist TAG

• S1. ExprLLM (LLM encoder): Gate-level text→ node local initialization

• S2. TAGFormer (GT): Circuit-level graph→ graph global refinement

• Auxiliary RTL and layout encoders → Cross-stage align3
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Model: NetTAG Multimodal Architecture

3Wenji Fang et al. A Self-Supervised, Pre-Trained, and Cross-Stage-Aligned Circuit Encoder 
Provides a Foundation for Various Design Tasks [ASP-DAC’25]



• Goal: enhance netlist functional and physical awareness

• Two-stage encoding → Two-step pre-training + Cross-stage alignment
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Pre-Train: Multimodal Self-Supervised (Overview)



• Step 1: Enhancing logic understanding in ExprLLM

• Goal 1: Differentiate gate expression text functionality

• Objective # 1: Symbolic expression text contrastive learning
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Pre-Train: Multimodal Self-Supervised (Text)

• Build gate expression dataset

• 2-hop symbolic expressions

• Boolean equivalence transformation rules



• Step 2: Fusion in TAGFormer

• Goal 2: Training within TAGFormer for semantic and structure fusion

• Objective # 2: Node & graph-level self-supervised
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Pre-Train: Multimodal Self-Supervised (Graph)

# 2.1: 
Masked gate reconstruction 

# 2.2: 
Graph contrastive learning

# 2.3: 
Graph size prediction



• Step 3: Cross-stage alignment
• Goal 3: Training beyond NetTAG for cross-stage func. & phys. awareness

• Objective # 3: Cross-stage contrastive alignment
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Pre-Train: Multimodal Self-Supervised (Stage)

• Align RTL→ functional

• Align layout → physical



Experimental Results



• Functional tasks: reasoning earlier RTL function (classification)
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Support Largely Different EDA Tasks – Functional

• Task 2: Seq. state/data register5

• Subgraph-level

• Task 1: Comb. gate function4

• Node-level 

4Lilas Alrahis et al. GNN-RE Graph Neural Networks for Reverse 
Engineering of Gate-Level Netlists. [TCAD’22]

5Subhajit et al. ReIGNN: State Register Identification Using Graph 
Neural Networks for Circuit Reverse Engineering. [ICCAD’21]



• Existing netlist encoders6,7 only support AIG format

• AIG version of Task 1

• ExprLLM-only can already achieve high accuracy
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Comparison with AIG Functional Encoders

6Ziyi Wang et al. Functionality Matters in Netlist Representation Learning. [DAC’22]
7Zhengyuan Shi et al. DeepGate3: Towards Scalable Circuit Representation Learning. [ICCAD’22]



• Physical tasks: predicting later layout PPA (regression)
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Support Largely Different EDA Tasks – Physical

• Task 3: Register slack

• Subgraph-level 

• Task 4: Design power/area

• Graph-level 



• Scalability: performance scaling up w. model/data size
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Observation on Foundation Model Scaling Law



Conclusion & 
Future Work



• NetTAG: first multimodal netlist encoder for any post-syn netlists

• Insight: graph-only→multimodal fusion paradigm via TAG
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Conclusion and Future Work

CodePaper

• Future work8

• Bridging the gap between Circuit Encoder and LLM Decoder

• Integrate NetTAG into LLMs for generative netlist function reasoning

8Wenji Fang et al. GenEDA: Unleashing Generative Reasoning on Netlist via Multimodal Encoder-Decoder Aligned Foundation Model. 



Thank You!
Questions?



• Dataset and preparation

• Dataset statistics: 626k expression & 200k netlist subcircuits & 10k aligned RTL/layout

• Symbolic logic expression manipulation: PySMT

• Model Implementation
• ExprLLM: LLM2Vec, an LLM encoder w. bidirectional attention (max 8k input)

• TAGFormer: SGFormer, a graph transformer

• RTL encoder: NV-Embed (max 32k input)

• Layout encoder: another SGFormer
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Backup: Experimental Setup



• Fine-tune embeddings with lightweight task models

• Reasoning earlier RTL function

• Predicting later layout PPA
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Backup: Fine-Tuning for Various Netlist Tasks
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Backup: Ablation Study



• 10x speedup over physical design process

• Key runtime factor

• Symbolic expression extraction

• Improve: gate-level parallelism

• ExprLLM inference

• Improve: more GPU resources
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Backup: Runtime Analysis
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