DAC Young Fellows

SHAPING THE NEXT GENERATION OF ELECTRONICS

Annotating Slack Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Optimization Wenji Fang, advisor: Zhiyao Xie, Hongce Zhang Hong Kong University of Science and Technology

Background and Motivation

Timing Evaluation in VLSI Design Flow

Experimental Results

Setup and Evaluation Metrics

Benchmarks* #Designs Design Size Range HDL Type

- Turnaround optimization for timing closure
- Existing methods (STA or ML-based): Available only post-syn
- > RTL-stage timing evaluation: **Only overall WNS/TNS**, **no early optimization**

Evaluate timing slack earlier at the RTL stage?

> Earlier stage with higher optimization flexibility

Challenges at RTL Stage

Methodology

VLSI Design Flow Equipped with RTL-Timer

- > 21 open-source RTL designs
- Label: post-syn slack on each endpoint register

	2011011101110	" 2 001B110	#K Gates	#K Endpoints	
-	ITC'99	6	9 - 45	0.4 - 1.3	VHDL
	OpenCores	4	6 - 56	0.2 - 3.8	Verilog
-	Chipyard	3	20 - 32	2.5 - 4.1	Chisel
-	VexRiscv	8	7 - 510	1.2 - 146	SpinalHDL

> Evaluation metrics: R, MAPE, COVR = $\frac{1}{m} \sum_{g=1}^{m} \frac{\#(S_g \cap S_g)}{\#S_g} \times 100\%$

Modeling Performance

- Fine-grained slack
 - R=0.89, COVR=80%
 - Ensemble learning: robustness contributed by each variant

Fine-Grained	Method	R	MAPE (%)	COVR (%)
	Tree-based w/o sample	0.80	26	59
	MLP	0.71	35	56
Dit	MLP w/o sample	0.65	38	54
Dit-wise	Transformer	0.73	35	57
	Customized GNN	0.25	53	46
	RTL-Timer	0.88	12	66
	Regression w/o bit-wise	0.56	28	56
Signal surias	Ranking w/o bit-wise	/	/	39
Signal-wise	RTL-Timer (regression)	0.89	15	71
	RTL-Timer (ranking)	/	/	80

	Metrics	SOG	AIG	AIMG	XAG	Ensemble
Dit wice	Avg. R	0.85	0.75	0.76	0.77	0.88
Dit-wise	Std. R	0.18	0.25	0.26	0.21	0.08
	Avg. R	0.82	0.81	0.84	0.8	0.89
Signal-wise	Std. R	0.15	0.22	0.1	0.1	0.06
Signal-wise	Avg. COVR	65	71	72	71	80
	Std. COVR	18	19	21	21	8

> Overall WNS/TNS

Calibrate fine-grained results

Universal ML-friendly RTL Representation

- ➢ Bit-level, specialized into different variants → multi-view
- > One-to-one mapping of registers
- Treat BOG as a pseudo netlist We can directly perform STA on it!

RTL-Timer Workflow

RTL-Timer outperforms all baselines

Optimization Performance

0.89 MasterRTL [4] WNS 0.91 RTL-Timer ICCAD'22 [13] 0.65 TNS 0.96 MasterRTL [4] 0.98 **RTL-Timer** 0.97

Overall

Method

SNS [17]

R

0.73

0.58

0.74

0.86

0.32

0.94

MAPE (%)

15

42

34

18

12

- Guiding commercial logic synthesis tool
 - Improve WNS (3.1%), TNS (9%), maintain area/power
 - Reduce design cycles (concurrently run default and opt flows)
- Impact remains significant after place (w. place opt): improve WNS (3.1%), TNS (6.8%)
- Slack distribution
 - **Path** grouping: Single high peak \rightarrow two lower peaks (better TNS)
 - **Register retiming**: improved WNS

RTL-Stage Slack Evaluation for Early Optimization

Key Methods

- Fine-grained modeling for register cone
 - **STA on BOG** for slowest/ randomly sampled path \rightarrow max arrival time for register
- Predictive optimization by constraining synthesis tools
 - **Path grouping** for TNS
 - **Register retiming** for WNS

- > RTL-Timer: evaluate slack on each register at the RTL stage
 - Ensemble four ML-friendly RTL representations
 - Capture max slack with based on register cone
- Enable early timing optimization
 - Annotate slack on HDL code for RTL designers
 - Predictive timing optimization for logic synthesis process

Prospective Work

- Existing ML for EDA solutions are task-specific tedious and time-consuming
- Prospect general circuit model solution easily developed
 - **Pre-training** to learn circuit intrinsic information
 - **Fine-tuning** for specific tasks (e.g., design quality, function)

Contact: wenjifang1@ust.hk

